
ParticleGenerator
An Athena Monte-Carlo event generator for single particles

William Seligman <seligman@nevis.columbia.edu>

This document was last revised on 21-Jan-2004

The ParticleGenerator package runs within Athena and puts single particles into the HepMC
transient data store. The intent of the package is to give the user a means of generating single
primary particles normally available within Geant3 or Geant4, but using an Athena jobOptions
file as the control mechanism.

Quickstart
For the purposes of this section, it's assumed that you are using the TestRelease package to run
an Athena job.

If you only wish to include the packages with which you're working in the TestRelease
cmt/requirements file, then include these lines:
use ParticleGenerator ParticleGenerator-* Generators
use McEventSelector McEventSelector-* Generators

In the jobOptions file, load the ParticleGenerator library and algorithm; you'll probably want
ParticleGenerator to be the first algorithm invoked (unless you have a task that needs to be
performed before event generation, such as creating histograms as described on page 7):
ApplicationMgr.DLLs += { "ParticleGenerator" };
ApplicationMgr.TopAlg = { "ParticleGenerator" };

You will also need the Particle-Properties service, and the Athena Random-Number Service;
e.g.:
#include "$PARTPROPSVCROOT/share/PartPropSvc.txt"
ApplicationMgr.ExtSvc += {"AtRndmGenSvc"};
AtRndmGenSvc.Seeds = {"SINGLE 2040160768 443921183"};

There are example jobOptions files in Generators/ParticleGenerator/share.

ParticleGenerator has just one parameter: an array of strings. Each string contains an order for a
different kinematic variable. The following example demonstrates the range of orders available:
ParticleGenerator.orders = {
 "pdgcode: constant 11",
 "energy: histogram 4402",
 "vertZ: gauss 0.0 50",
 "vertX: loop -10 11 1",
 "eta: sequence 0.1 0.3 0.6 1.2 2.8 3.0 5",
 "phi: flat 0 6.2832"
};

The remaining sections of this documentation describe the kinematic variables that can be used
in ParticleGenerator, and the different commands that can be assigned to a kinematic variable.

21-Jan-2004 ParticleGenerator-00-00-09 Page 1

Variables
Table 1: The following kinematic variables are available in ParticleGenerator:

variable abbrev. name description default command (1)

 PDG code id pdgcode particle ID code from PDG fixed 999 (2)

 Vx vx vertx vertex x-position fixed 0

 Vy vy verty vertex y-position fixed 0

 Vz vz vertz vertex z-position fixed 0

 E e energy total energy fixed 10000

 ET et transverse energy transverse to z-axis fixed 0

 px (3) px momx momentum direction along the x-axis fixed 0

 py py momy momentum direction along the y-axis fixed 0

 pz pz momz momentum direction along the z-axis fixed 1

 η eta eta pseudorapidity fixed 0

 θ theta theta theta angle from positive z-axis fixed 0

 φ phi phi phi angle from positive x-axis fixed 0

 Tx (4) tx targetx target x-position fixed 0

 Ty ty targety target y-position fixed 0

 Tz tz targetz target z-position fixed 0

 t t time time of particle at vertex fixed 0

 Px (5) polx polx polarization along x-axis fixed 0

 Py poly poly polarization along y-axis fixed 0

 Pz polz polz polarization along z-axis fixed 0

Notes:

1. "default command" is the command used to generate the value of the variable if the user does
not supply an order for that variable. If some of the commands in the table seem
contradictory, note that the default mode to determine the angle is by θ and φ, and the default
mode to determine the energy is by using E.

2. In the Particle Data Group's (PDG) scheme of numbering particles in a Monte Carlo, the value
999 corresponds to a geantino. For a list of codes, see
<http://pdg.lbl.gov/mc_particle_id_contents.html>.

3. Following the convention of Geant4, px, py, and pz specify the momentum direction, not the
projection of the particle momentum onto a given axis. The absolute value of these variables

21-Jan-2004 ParticleGenerator-00-00-09 Page 2

are irrelevant; only their values relative to each other are used.

4. Tx, Ty, and Tz are an alternate method of specifying the particle angle; the particle's θ and φ are
taken from a straight line drawn from the vertex (x, y, z) to the target (x, y, z).

5. Following the convention of Geant4, the particle's polarization is given by projections in
Cartesian co-ordinates. If you require the polarization be given in terms of Pθ and Pφ, contact
the package author at <seligman@nevis.columbia.edu> and let him know. (In fact, if you use
ParticleGenerator to control the polarization at all, please let him know; he strongly suspects
that no one will find the feature to be useful.)

The units follow the CLHEP convention: all energy and momenta are in MeV; distances and time
(cτ) are in mm.

Modes (or the lack thereof)
The SingleParticleGun package had a parameter for the user to specify a "mode" for how to
compute the particle's kinematics: by (ET, η, φ), by (E, θ, φ), etc. ParticleGenerator does not
require a mode to be explicitly specified. Instead, the package examines the user's orders to
determine how to calculate the particle's kinematics.

The package examines the variables included in the user's orders. The package will pick one of
the following modes to determine θ and φ:

� by (θ, φ);
� by (η, φ);
� by (px, py, pz) (see note (3) in Table 1);
� by (Vx, Vy, Vz) and (Tx, Ty, Tz) (see note (4) in Table 1);
� by the ratio ET /E, φ, and pz (the last variable is only examined for its sign; if pz < 0 then the

particle is sent in the negative z-direction).

If the particle's angle is not being determined by the ET /E ratio, then the particle's energy will be
specified by the variable that the user specifies in an order: either E or ET .

What happens if the user's orders are consistent with more than one of the above modes? For
example, what if the user tries the following orders:
ParticleGenerator.orders = {
 "id: constant 211",
 "eta: fixed 1.5",
 "theta: loop 0 3.14159 0.157",
 "e: constant 6.29e3",
 "transverse: gauss 62.9 5"
};

It's not clear whether the user wants to specify the angle with respect to the z-axis by η, by θ, or
by the ET /E ratio. (In any case φ will be zero, the default value from Table 1.) In the case of any
ambiguity in determining how to generate a particle's kinematics, ParticleGenerator will display
a detailed error message, then throw a GaudiException.

21-Jan-2004 ParticleGenerator-00-00-09 Page 3

The moral is: Look over your orders carefully, and make sure they're consistent.

Commands
The syntax of a ParticleGenerator "order" is:
"<variable>: command"

...where <variable> is an abbreviation or name from Table 1, and the command is one of the
following. Note that orders are converted to lower-case as part of ParticleGenerator's interpreter
process.

"Constant" or "Fixed"

The keyword constant or fixed (the two words are equivalent) must be followed by a
numeric value. This command will assign that value to the variable in the order for every event.
For example:
ParticleGenerator.orders = {
 "ID: constant -11",
 "Vx: fixed 100",
 "Vy: fixed 30.0",
 "Vz: fixed -50",
 "Theta: constant .707",
 "Phi: fixed 3.14159",
 "Energy: constant 600000."
};

"Uniform" or "Flat"

The keyword uniform or flat (the two words are equivalent) must be followed by two
numeric values. This command will generate a random number uniformly between the two
values. The lower value should be specified before the higher one, but if they're reversed they'll
be put into the correct order.

An example (note that the default vertex is at (0,0,0)):
ParticleGenerator.orders = {
 "pdgcode: fixed 11",
 "theta: uniform -2.82 2.82",
 "phi: flat 0 6.2832",
 "Et: constant 0.6e+06"
};

"Gaussian" or "Normal"

The keyword gaussian or normal (the two words are equivalent) must be followed by two
numeric values. This command will generate a random number according to a Gaussian
distribution, with a mean of the first value and a width of the second.

For example:

21-Jan-2004 ParticleGenerator-00-00-09 Page 4

ParticleGenerator.orders = {
 "PDGcode: constant 111",
 "vertZ: gaussian 0 10",
 "targetX: fixed 30",
 "targetY: fixed -4.5",
 "targetZ: fixed 2.71828",
 "transverse: normal 6.5E3 1.0E3"
};

In this example, the z-vertex will be generated by a gaussian distribution with a mean of 0.0 and
a width of 10.0; ET will be generated by a gaussian with a mean of 6500 and a width of 1000.

"Loop"

The keyword loop must be followed by three numeric values: 'start', 'finish', and 'step'. The
resulting command will generate a repeating cycle of numbers: the first value will be 'start'; the
subsequent values will be the previous value plus 'step'; if the value is not less than 'finish', then
the 'start' value will be returned.

This vaguely resembles the behavior of a FORTRAN DO loop, but there are some important
differences:

� The third value, 'step', is not optional. The default 'step' is not 1. If you don't supply a third
value, a GaudiException will be thrown and the job will abort.

� The value returned by the loop will never equal 'finish'. Note the above wording: the loop
resets when the value is not less than 'finish'; this isn't the same thing as saying that the loop
resets when its value is greater than finish.

For example, if you want a value to loop from 0 to 10 by 1, an appropriate command is:
"loop 0 11 1" or even "loop 0 10.1 1".

If this behavior seems puzzling, consider:
� It's consistent with how STL containers behave within C++; they are referenced

by the half-open interval [begin,end), that is, the iterator end() is not included in
the container. The loop command operates on the interval [start,finish), that is,
the value 'finish' is not included in the cycle.

� Even if you supply integer values, the loop command works with floating-point
numbers. Testing floating-point values for equality can be risky. Depending on
the machine and the compiler, adding 0.628318530718 (~π/5) to itself ten times
may not give exactly the value 6.28318530718 (~2π).

Example: If you wanted to vary φ from 0 to 360 degrees in 30-degree steps, an appropriate order
is "phi: loop 0 6.28 .5235988".

By the way, the loop command will work properly with negative steps; for example,
"loop 10 0 -1" (which will go from 10 down to 1, then go back to 10).

"Sequence"

The keyword sequence must be followed by at least one numeric value. The resulting

21-Jan-2004 ParticleGenerator-00-00-09 Page 5

command will generate each value supplied in the command in the order they're given, then go
back to the beginning.

For example, given the order "eta: sequence 0.02 0.1 0.5 1.2 2.8 3.6", the
first event would have η = 0.02, the second event would have η = 0.1, the third event would have
η = 0.5... the sixth event would have η = 3.6, the seventh event would have η = 0.02, the eighth
would have η = 0.1, and so on.

For nested loops and sequences: "After"

Both the loop and sequence commands generate a "cycle" of values; that is, they generate a
repeating set of values. (Strictly speaking, this is true of the uniform and gaussian
generators as well, but hopefully the cycle in these commands contains more than 1010 values.)

In ParticleGenerator, a "cyclic" command has the property that it can nest inside another
command. An example may make this clearer: Suppose we have the following set of orders:
ParticleGenerator.orders = {
 "id: constant 22",
 "VertX: loop -100 101 10",
 "VertY: loop -100 101 10",
 "VertZ: loop -100 101 10"
};

Each loop command will be cycled for each event, with the following result:

Event # vertex (x,y,z)

1 (-100,-100,-100)

2 (-90, -90, -90)

3 (-80, -80, -80)

... ...

20 (+90, +90, +90)

21 (+100,+100,+100)

22 (-100,-100,-100)

This may be what the user wants, but probably the desired result is to have the equivalent of a
nested FORTRAN DO loop. To get this, ParticleGenerator offers the keyword after, which
must be followed by the name or abbreviation of a kinematic variable.

If the above example is modified to implement nested loops, it looks like:
ParticleGenerator.orders = {
 "id: constant 22",
 "VertX: loop -100 101 10",
 "VertY: loop -100 101 10 after VertX",
 "VertZ: loop -100 101 10 after VertY"
};

The result will be:

21-Jan-2004 ParticleGenerator-00-00-09 Page 6

Event # vertex (x,y,z)

1 (-100,-100,-100)

2 (- 90,-100,-100)

3 (-80,-100,-100)

... ...

20 (+90,-100,-100)

21 (+100,-100,-100)

22 (-100, -90,-100)

An english translation of "VertY: loop -100 101 10 after VertX" is: only move
to the next value in the VertY cycle after VertX has gone through one entire cycle.

Here's another example of using nested cycles:
ParticleGenerator.orders = {
 "pdgcode: constant -112",
 "theta: sequence 0.785398 -0.785398",
 "phi: loop 0 6.28 .5235988 After theta",
 "Et: sequence 300e3 500e3 700e3 1000e3 After phi"
};

The above set of orders sets θ to +45 degrees, then to -45 degrees; the φ loop is incremented after
each value of θ is used; the ET sequence goes to its next value when the φ loop goes back to 0.

"User" or "Histogram"

The keyword user or histogram (the two words are equivalent) must be followed by the
name of a histogram created by the user. The histogram must be created by an Athena algorithm
that executes before ParticleGenerator. This command will generate random numbers according
to the distribution contained in the histogram.

An example algorithm can be found in the source file
ParticleGeneratorExampleHistogram.cxx in the directory
Generators/ParticleGenerator/src/. A sample jobOptions file that makes use of
this algorithm is in file jobOptions_ParticleGeneratorExampleHistogram.txt
within the directory Generators/ParticleGenerator/share/. Users who are
interested in creating their own histograms for ParticleGenerator should refer to these files; they
include a large number of comments of interest to developers and users that are not included in
this documentation.

The user histogram must be stored in the base directory /stat/particlegenerator/ (or a
sub-directory within this directory). You can include this base directory name in the command,
or omit it for brevity; /stat/particlegenerator/angles/440 and angles/440
refer to the same histogram. (You might give a histogram a numeric name if there was an
HbookCnv service invoked in your job, since only histograms with numeric IDs can be
converted into HBOOK format.)

Assuming that a histogram with the name energydistribution was stored in this
directory, then the following orders would work:

21-Jan-2004 ParticleGenerator-00-00-09 Page 7

ParticleGenerator.orders = {
 "pdgcode: constant 13",
 "energy: histogram energydistribution",
 "theta: fixed .707",
 "phi: fixed 0"
};

Notes and Warnings
� ParticleGenerator is flexible when it comes to interpreting orders: the text of all orders are

converted into lower case; only the first letter of a word is used to identify keywords (except
for fixed or flat, and uniform or user, which require two letters to distinguish them
from each other); extraneous words between numeric values are ignored; the after keyword
+ kinematic name can occur anywhere after the keywords loop or sequence; equals signs
(=) are converted into spaces; the kinematic variable that begins an order can be followed by a
space or other punctuation instead of a colon (:).

The practical upshot of the preceeding paragraph is that ParticleGenerator is fairly tolerant of
typographic errors, or of comments inserted into orders. For example, all of the following
orders are interpreted identically (the z-vertex is given by a gaussian distribution with a mean
of 0 and a width of 10):
"vz: gaussian 0 10"
"vertZ: Gauss +0.0 10.0"
"Vz: NorMal 0 1E+1"
"VeRTZ=Normal Mean=0 Width=10"
"veRtz g00fy This Is Ignored 0 By ParticleGenerator 10 Most Of the Time"
"vz: gauss width=0 mean=10"

Note the last line; don't be fooled by extraneous text. It's the order of the values in the
command that determines their meaning, not the comments.

� The main exception to ParticleGenerator's flexibility is interpreting the names of histograms.
Any alphabetic characters in a histogram name and in its directory path must be in lower case.

� ParticleGenerator "parses" each order and stores it in an internal format. You may not see the
exact text of your orders in ParticleGenerator's error messages; it will display the interpreted
version of the order.

� The order in which you give your orders is irrelevant.
� If you're trying to determine how ParticleGenerator is interpreting your orders, you may want

to change the MsgService.OutputLevel to DEBUG or VERBOSE. If you set the level to
DEBUG, the kinematics for each event created by ParticleGenerator will be displayed. If you
set the level to VERBOSE, the interpreted values of each command, the contents of any
histograms, and the values of each individual generator for each event will be displayed.

� It is very easy to "out-think" ParticleGenerator. For example, you may think, "If I supply
target (x, y, z), ET , Vx, Vy, and φ, ParticleGenerator should be able to determine Vz." No, it
can't. ParticleGenerator is limited to the modes described above.

� You can only nest loops or sequences within other loops and sequences. If you put "after vz"
in a loop command, and the Vz order is a gaussian, you'll get an error message.

21-Jan-2004 ParticleGenerator-00-00-09 Page 8

� The value of PDG code will be converted to an integer. Most of the time, you'll probably want
a fixed value for the particle ID (e.g., "ID: fixed 11" to generate electrons), or perhaps a
sequence ("PDGcode: sequence 112 -112" will alternate between π+ and π-).
However, ParticleGenerator does not check to see if the command for the PDG code will
always return an integer value; you can put in the command "id: gaussian 14 1" but
there's no guarantee that you'll get a meaningful result.

Potential Improvements
Here are some improvements that may be made to ParticleGenerator, if someone requests it:

� Other commands, if they would be useful (Lorentz distributions?).
� The option of adding units to an order; e.g., "Phi: 0 360 30 degrees" or
"Et: fixed 300 GeV".

� Add more kinematic variables; e.g., Pθ and Pφ as suggested above.
� Allow multiple particles to be specified; e.g.,
ParticleGenerator.orders = {
 "id[1]: constant 11",
 "id[2]: constant 11",
 "theta[1]: gaussian 0 .100",
 "vertz[1]: fixed 10",
 "theta[2]: fixed .050",
 "vertz[2]: flat -5 5"
};

Example files
In the package directory Generators/ParticleGenerator/share are several files that
may be useful:

� requirements.TestRelease - This file can be used as a TestRelease/cmt/requirements
file in order to test ParticleGenerator.

� jobOptions_ParticleGenerator.txt - This file can be placed in TestRelease/run/.
With the previous file copied to TestRelease/cmt/requirements, this jobOptions file will run
just the ParticleGenerator algorithm.

� jobOptions_ParticleGeneratorExampleHistogram.txt - An example
jobOptions file that makes use of an example algorithm that creates a histogram for a
ParticleGenerator command.

Note that, like all Generator algorithms, the 'athena' command must be executed with
TestRelease/run as the current working directory; otherwise, the Generators package will not
be able to find the PDGTABLE file and the job will crash with a segmentation fault.

The file LArCalorimeter/LArG4/LArG4Algs/share/jobOptions_LArG4.txt
contains an example of how to run ParticleGenerator followed by a Monte Carlo algorithm, in
this case the Geant4 simulation of the LAr calorimeters.

21-Jan-2004 ParticleGenerator-00-00-09 Page 9

Revisions
The following revisions were made to this document for ParticleGenerator-00-00-09 in Jan 2004:

� The documentation has been changed to reflect the global ATLAS policy of using CLHEP
units (in particular, MeV instead of GeV).

The following revisions were made to this document for ParticleGenerator-00-00-03 in Aug
2003:

� The default particle ID is now 999, the geantino.
� The user/histogram command was added, to generate random numbers according to a

user-supplied histogram.

Acknowledgements
Mikhail Leltchouk made the initial request for the functionality of ParticleGenerator to be
implemented as a command-line extension to Geant4; he did so in 1999, so it only took four
years to find time to implement it (and it's part of Athena, not Geant4). The original idea behind
ParticleGenerator was inspired by the GKINE command-line functionality available in Geant3,
The structure of ParticleGenerator is based on that of SingleParticleGun, as prepared by Marjorie
Shapiro and Ian Hinchliffe.

Giorgos Stavropoulos provided a tremendous amount of assistance during ParticleGenerator
development. The advice of Paolo Calafiura was invaluable as well.

While under development, this package was named ParticleCannon, ParticleRifle, ParticleFire,
and ParticleCommand. Fortunately, for the final name, common sense prevailed.

21-Jan-2004 ParticleGenerator-00-00-09 Page 10

